3.5.84 \(\int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx\) [484]

Optimal. Leaf size=168 \[ -\frac {B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {(A+2 B) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {(A+2 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \]

[Out]

1/3*(A+2*B)*sin(d*x+c)*sec(d*x+c)^(1/2)/a^2/d/(1+sec(d*x+c))-1/3*(A-B)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(
d*x+c))^2-B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(
1/2)*sec(d*x+c)^(1/2)/a^2/d+1/3*(A+2*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+
1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 168, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {3039, 4104, 4105, 3872, 3856, 2719, 2720} \begin {gather*} \frac {(A+2 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a^2 d (\sec (c+d x)+1)}+\frac {(A+2 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]]),x]

[Out]

-((B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d)) + ((A + 2*B)*Sqrt[Cos[c + d*x]]
*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + ((A + 2*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a^2*
d*(1 + Sec[c + d*x])) - ((A - B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3039

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4104

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rule 4105

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*
(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[
A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx &=\int \frac {\sqrt {\sec (c+d x)} (B+A \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx\\ &=-\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \frac {\frac {1}{2} a (A-B)+\frac {3}{2} a (A+B) \sec (c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx}{3 a^2}\\ &=\frac {(A+2 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \frac {-\frac {3 a^2 B}{2}+\frac {1}{2} a^2 (A+2 B) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{3 a^4}\\ &=\frac {(A+2 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {B \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a^2}+\frac {(A+2 B) \int \sqrt {\sec (c+d x)} \, dx}{6 a^2}\\ &=\frac {(A+2 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^2}+\frac {\left ((A+2 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2}\\ &=-\frac {B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {(A+2 B) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {(A+2 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 2.57, size = 256, normalized size = 1.52 \begin {gather*} \frac {e^{-i d x} \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (8 (A+2 B) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-i \sin \left (\frac {1}{2} (c+d x)\right )\right )+i \left (B e^{-i (c+d x)} \left (1+e^{i (c+d x)}\right )^3 \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )+2 \cos (c+d x) (-A-5 B+(A-7 B) \cos (c+d x)-i (A-B) \sin (c+d x))\right )\right ) \left (\cos \left (\frac {1}{2} (c+3 d x)\right )+i \sin \left (\frac {1}{2} (c+3 d x)\right )\right )}{6 a^2 d (1+\cos (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]]),x]

[Out]

(Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(8*(A + 2*B)*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2,
 2]*(Cos[(c + d*x)/2] - I*Sin[(c + d*x)/2]) + I*((B*(1 + E^(I*(c + d*x)))^3*Sqrt[1 + E^((2*I)*(c + d*x))]*Hype
rgeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/E^(I*(c + d*x)) + 2*Cos[c + d*x]*(-A - 5*B + (A - 7*B)*Cos
[c + d*x] - I*(A - B)*Sin[c + d*x])))*(Cos[(c + 3*d*x)/2] + I*Sin[(c + 3*d*x)/2]))/(6*a^2*d*E^(I*d*x)*(1 + Cos
[c + d*x])^2)

________________________________________________________________________________________

Maple [A]
time = 0.44, size = 350, normalized size = 2.08

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+12 B \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 B \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 A \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-20 B \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 A \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+9 B \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+A -B \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(350\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+12*B*cos(1/2*d*x+1/2*c)^6+4*B*(s
in(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x
+1/2*c)^3+6*B*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(co
s(1/2*d*x+1/2*c),2^(1/2))+2*A*cos(1/2*d*x+1/2*c)^4-20*B*cos(1/2*d*x+1/2*c)^4-3*A*cos(1/2*d*x+1/2*c)^2+9*B*cos(
1/2*d*x+1/2*c)^2+A-B)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*
x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.13, size = 324, normalized size = 1.93 \begin {gather*} \frac {{\left (\sqrt {2} {\left (-i \, A - 2 i \, B\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (i \, A + 2 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - 2 i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (i \, A + 2 i \, B\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-i \, A - 2 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A + 2 i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (i \, \sqrt {2} B \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} B \cos \left (d x + c\right ) + i \, \sqrt {2} B\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (-i \, \sqrt {2} B \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} B \cos \left (d x + c\right ) - i \, \sqrt {2} B\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (3 \, B \cos \left (d x + c\right )^{2} + {\left (A + 2 \, B\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/6*((sqrt(2)*(-I*A - 2*I*B)*cos(d*x + c)^2 - 2*sqrt(2)*(I*A + 2*I*B)*cos(d*x + c) + sqrt(2)*(-I*A - 2*I*B))*w
eierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(I*A + 2*I*B)*cos(d*x + c)^2 - 2*sqrt(2)*(
-I*A - 2*I*B)*cos(d*x + c) + sqrt(2)*(I*A + 2*I*B))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))
- 3*(I*sqrt(2)*B*cos(d*x + c)^2 + 2*I*sqrt(2)*B*cos(d*x + c) + I*sqrt(2)*B)*weierstrassZeta(-4, 0, weierstrass
PInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*(-I*sqrt(2)*B*cos(d*x + c)^2 - 2*I*sqrt(2)*B*cos(d*x + c)
- I*sqrt(2)*B)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(3*B*cos(
d*x + c)^2 + (A + 2*B)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x
+ c) + a^2*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {A}{\cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + 2 \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {B \cos {\left (c + d x \right )}}{\cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + 2 \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))**2/sec(d*x+c)**(1/2),x)

[Out]

(Integral(A/(cos(c + d*x)**2*sqrt(sec(c + d*x)) + 2*cos(c + d*x)*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x))), x)
+ Integral(B*cos(c + d*x)/(cos(c + d*x)**2*sqrt(sec(c + d*x)) + 2*cos(c + d*x)*sqrt(sec(c + d*x)) + sqrt(sec(c
 + d*x))), x))/a**2

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2),x)

[Out]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2), x)

________________________________________________________________________________________